ONDAS RADIALES![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgz3WRa6EWOGeDOsijTHLQtIG49_htlQ2zm81gS6PHNi1G-HzlaIx3cO25Sq3h1CoWLLOQoTdjdiIOCgYbe5i34ZmBncVgBxKnJbWGcxo2kdsKnF7I02hlPzx6HCGxV-4OxQfMAFzyHr7A/s320/images.jpg)
Nuestra sociedad contemporánea vive inmersa en la tecnología, de tal modo que no nos sorprende en absoluto el milagro de la televisión, los teléfonos celulares o las comunicaciones por satélite. Pero, en sus primeras aplicaciones las ondas de radio fueron una auténtica revolución, algo que para los profanos de la ciencia se identificaba más con un hecho sobrenatural que con un descubrimiento científico.
Guglielmo Marconi fue el primero en dar aplicación práctica a las ondas de radio, un fenómeno electromagnético que fuera estudiado anteriormente por el físico alemán Heinrich Hertz, de ahí que hoy en día se les denomine “ondas herzianas”.
Para entender qué es una onda herziana, tendríamos que comenzar por explicar cómo se mueven los electrones en un conductor y cuáles son sus efectos sobre él. En el Blog de Natureduca, puedes leer el artículo “Qué es la electricidad“, donde se describe la electricidad básica con términos asequibles a los menos entendidos. A partir de ahí, intentaré explicar el fenómeno herziano.
ondas medicinales
1.4.3.Infrarrojos:
Los rayos infrarrojos se utilizan comúnmente en nuestra vida cotidiana: cuando encendemos el televisor y cambiamos de canal con nuestro mando a distancia; en el supermercado, nuestros productos se identifican con la lectura de los códigos de barras; vemos y escuchamos los discos compactos... todo, gracias a los infrarrojos. Estas son sólo algunas de las aplicaciones más simples, ya que se utilizan también en sistemas de seguridad, estudios oceánicos, medicina, etc.
1.4.4.Los rayos X:
Los rayos X se emplean sobre todo en los campos de la investigación científica, la industria y la medicina.
El estudio de los rayos X ha desempeñado un papel primordial en la física teórica, sobre todo en el desarrollo de la mecánica cuántica. Como herramienta de investigación, los rayos X han permitido confirmar experimentalmente las teorías cristalográficas. Utilizando métodos de difracción de rayos X es posible identificar las sustancias cristalinas y determinar su estructura. . Los métodos de difracción de rayos X también pueden aplicarse a sustancias pulverizadas que, sin ser cristalinas, presentan alguna regularidad en su estructura molecular. Mediante estos métodos es posible identificar sustancias químicas y determinar el tamaño de partículas ultramicroscópicas. Los elementos químicos y sus isótopos pueden identificarse mediante espectroscopia de rayos X, que determina las longitudes de onda de sus espectros de líneas característicos. Varios elementos fueron descubiertos mediante el análisis de espectros de rayos X.
Muchos productos industriales se inspeccionan de forma rutinaria mediante rayos X, para que las unidades defectuosas puedan eliminarse en el lugar de producción. Existen además otras aplicaciones de los rayos X, entre las que figuran la identificación de gemas falsas o la detección de mercancías de contrabando en las aduanas; también se utilizan en los aeropuertos para detectar objetos peligrosos en los equipajes. Los rayos X ultrablandos se emplean para determinar la autenticidad de obras de arte y para restaurar cuadros.
ondas terapeuticas
La importancia de los radicales libres reside en el hecho de que se cree que están relacionados con ciertos estados tempranos de muchas enfermedades, tales como el cáncer y ciertas enfermedades cardiacas.
Algunas de estas técnicas en desarrollo son:
- Radiofrequency Electron Spin Resonance (ESR) spectroscopy: un método para detectar los electrones de los radicales libres directamente mediante el empleo de campos magnéticos y ondas de radio
- Longitudinally-Detected ESR Imaging (LODESR Imaging): un método alternativo para detectar radicales libres, usando también campos magnéticos y ondas de radio. Esta técnica establece la base de un método para representar imágenes de los radicales libres y parece detectar concentraciones inferiores que las técnicas convencionales.
- Proton-Electron Double-Resonance Imaging (PEDRI): Una técnica para representar la distribución de los radicales libres dentro del organismo. PEDRI resulta de combinar ESR con Nuclear Magnetic Resonance Imaging (NMR), y también emplea campos magnéticos y ondas de radio.